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Abstract: The Po River Basin (PRB) is Italy’s largest river system and provides a vital water supply
source for varying demands, including agriculture, energy (hydropower), and water supply. The
current (2022) drought has been associated with low winter–early spring (2021–2022) snow accumula-
tion in higher elevations (European Alps) and a lack of late spring–early summer (2022) precipitation,
resulting in deficit PRB streamflow. Many local scientists are now estimating a 50- to 100-year (return
period) drought for 2022. Given the importance of this river system, information about past (paleo)
drought and pluvial periods would provide important information to water managers and planners.
Annual streamflow data were obtained for thirteen gauges that were spatially located across the
PRB. The Old World Drought Atlas (OWDA) provides annual June–July–August (JJA) self-calibrating
Palmer Drought Severity Index (scPDSI) data for 5414 grid points across Europe from 0 to 2012 AD. In
lieu of tree-ring chronologies, this dataset was used as a proxy to reconstruct PRB regional streamflow.
Singular value decomposition (SVD) was applied to PRB streamflow gauges and gridded scPDSI data
for two periods of record, referred to as the short period of record (SPOR), 1980 to 2012 (33 years),
and the long period of record (LPOR), 1967 to 2012 (46 years). SVD serves as both a data reduction
technique, identifying significant scPDSI grid points within the selected 450 km search radius, and
develops a single vector that represents the regional PRB streamflow variability. Due to the high inter-
correlations of PRB streamflow gauges, the SVD-generated PRB regional streamflow vector was used
as the dependent variable in regression models for both the SPOR and LPOR, while the significant
scPDSI grid points (cells) identified by SVD were used as the independent variables. This resulted in
two highly skillful regional reconstructions of PRB streamflow from 0 to 2012. Multiple drought and
pluvial periods were identified in the paleo record that exceed those observed in the recent historical
record, and several of these droughts aligned with paleo streamflow reconstructions of neighboring
European watersheds. Future research will utilize the PRB reconstructions to quantify the current
(2022) drought, providing a first-time paleo-perspective of drought frequency in the watershed.

Keywords: Po River basin (Italy); streamflow reconstruction; tree rings; Palmer Drought Severity
Index (PDSI); drought

1. Introduction

The Po River Basin (PRB) (Figure 1), located in northern Italy between the Alpine
and Apennine mountain chains, is the largest watershed in Italy, covering ~74,700 km2

(~71,000 km2 in Italy and ~3000 km2 in Switzerland and France). The mean annual tem-
perature varies between 5 and 15 degrees Celsius, being closer to 5 degrees Celsius in the
Alpine region and to 10–15 degrees Celsius in the Apennine region [1]. The mean annual
precipitation is about 1200 mm, and the annual average discharge (during the period from
1923 to 2006) was 1500 m3/s, with a maximum recorded peak flow of 10,300 m3/s at Ponte-
lagoscuro (close to the city of Ferrara) in 1951. The hydrological system of the PRB [2] is
highly complex and includes a variety hydroclimatic regimes: (1) the Alpine reaches, which
are snow-dominated and fed by snow and glacial melt, presenting a typical seasonal peak
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flow between spring and early summer; (2) the Apennine rivers, which are dominated by
rainfall, showing a minimum seasonal flow during the summer; and (3) the deltaic system
of the Po River [3], which is one of the most important in the Mediterranean Sea, covers an
area of ~700 km2, and is part of the UNESCO Man and Biosphere (MAB) Program. The
interactions of this variety of hydroclimatic regimes together with the groundwater flow
determine the annual regime of the Po River, which results in two hydrometric low-level
periods (winter and summer) and two periods of flooding (late fall and spring).
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Figure 1. Po River Basin (PRB), with thirteen streamflow gauge locations. Black circles represent the
seven gauges with complete records from 1980 to 2012, while black triangles represent the six gauges
in which GloFAS data were supplemented with gauge data for 1980 to 2012. All thirteen gauges were
used in the SPOR (1980 to 2012) reconstruction, while gauges #3, #6, #7, #8, #9, and #11 were used in
the LPOR (1967 to 2012) reconstruction.

The Po River basin is one of the most intensively populated, cultivated and highly
developed areas of Europe. It hosts a total population of ~20 million people (the demo-
graphic density is ~225 inhabitants per km2), and 35% of the valued-added economic
production in Italy is located within the PRB [4], including agriculture, manufacturing, and
service providers. Water resource quantification and management is therefore crucial in
such a watershed, given the high population density, intense agricultural land use, and
hydro/thermal power plants (the majority are located in the upper PRB), where concur-
rent water uses have to be satisfied [4,5]. Specifically: (1) the agricultural production of
the PRB represents 35% of the total national production [2] and (2) the basin contains
890 hydropower plants, which produce 46% of the total Italian hydropower production,
and 400 thermal power plants, which produce 32% of the total Italian power production [2].

Given the importance of the PRB to its residents and the Italian economy, the ability
to provide PRB water managers and planners information about PRB streamflow variabil-
ity for increased timescales (paleo records) would be incredibly beneficial. Streamflow
reconstructions using paleo proxies are limited in this region, with the most recent work [6]
focusing on the Rhine River Basin (RRB) and the PRB. Obertelli (2020) [6] observed mixed
results in obtaining good reconstruction skill in the RRB and poor reconstruction skill in the
PRB. He attributed the poor PRB reconstruction skill to the influences of Alpine runoff [6].
Thus, the motivation of the current research was to attempt to improve reconstruction
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skill in the PRB by (1) using an increased search radius for the consideration of proxies to
use in reconstruction models; (2) utilizing singular value decomposition (SVD) as a data
reduction tool and to generate a single vector to represent PRB streamflow variability, thus
developing a regional (not gauge-based) PRB streamflow reconstruction; (3) developing
regional PRB streamflow reconstructions for two periods of record for the comparison and
evaluation of their influence on the results; and (4) applying and evaluating a rigorous
group of statistics to alleviate concerns of model multicollinearity and over-fitting.

While traditional reconstructions of streamflow rely on tree-ring proxies, [7,8] devel-
oped a novel approach at both the basin scale (i.e., Missouri River Basin, U.S.) and the
continental scale (i.e., Continental U.S. or CONUS), in which tree-ring-based reconstruc-
tions of the summer Palmer Drought Severity Index (PDSI) were used as reconstruction
proxies. The PDSI data were obtained from the Living Blended Drought Atlas (LBDA) [9],
an updated version of the North American Drought Atlas [10], and the LBDA has a spatial
resolution of 0.5 degrees by 0.5 degrees across the CONUS. In [7], the authors selected a
search radius of 450 km from the streamflow gauge of interest and considered all LBDA
PDSI cells within this radius when developing reconstruction models. In Europe, the Old
World Drought Atlas (OWDA) provides annual June–July–August (JJA) self-calibrating
Palmer Drought Severity Index (scPDSI) values for 5414 grid points across Europe from
0 to 2012 AD [11]. Similar to [6], the current research utilized the OWDA scPDSI as recon-
struction proxies. While [6] limited the consideration of OWDA scPDSI cells to (only) those
within the PRB watershed, the current research considered OWDA scPDSI cells within a
450 km search radius of the centroid of the PRB, per [7].

Perhaps the biggest challenge [7] identified when utilizing the LBDA as a reconstruc-
tion proxy was the high spatial correlation of the LBDA grid cells, which could lead to
multicollinearity challenges in reconstruction model development. Various statistical tech-
niques exist to determine the relationship between two spatial-temporal fields, including
regularized canonical correlation analysis (rCCA), as selected by [7], and principal compo-
nent analysis (PCA), as selected by [6], which are both very appropriate. Singular value
decomposition (SVD) has the advantage of being able to evaluate the cross-covariance
matrix of two spatial-temporal fields to identify similarities between them, while PCA
evaluates only one spatial-temporal field. In [12], the authors concluded that singular value
decomposition (SVD) was simple to use and preferable for general use, while [13] found
that SVD was a powerful technique that isolates the most important modes of variability,
and multiple studies have applied SVD in the field of hydrology [14]. SVD accomplishes
two roles in that it serves as a data reduction tool for identifying significant spatial cells
(i.e., independent variables—scPDSI) for use in the regression-based reconstruction models
and generates a single time-series vector that represents the variability of streamflow for
the multiple gauges identified in the PRB (i.e., the dependent variable). Ho et al. (2016) [7]
noted that, “A single reconstruction model would be advantageous in its ability to consider
all streamflow stations at once rather than fitting 55 individual models.” Thus, the novel use
of SVD addresses a desire of [7] to generate a regional reconstruction instead of individual
gauge reconstructions. The SVD-generated single time-series vector, which represents
regional (multigauge) PRB streamflow variability, was utilized as the dependent variable
in the regression-based reconstruction model, while the scPDSI cells identified by SVD
served as the independent variables. The regional reconstruction complements [6], who
developed PRB reconstructions at Global Flood Awareness System (GloFAS) points within
the PRB for the 1979 to 2012 period. For the current research, two periods were selected
for reconstruction model development: the short period of record (SPRO), similar to [6],
from 1980 to 2012 (33 years), which includes thirteen PRB streamflow gauges, and the long
period of record (LPRO) from 1967 to 2012 (46 years), which includes six PRB streamflow
gauges. A rigorous set of statistics evaluated the developed regression models to alleviate
concerns of over-fitting and multicollinearity, per [7].



Hydrology 2022, 9, 163 4 of 11

2. Materials and Methods

Streamflow data consisting of the average annual flowrate (m3/s) were identified for
thirteen gauges within the PRB (Figure 1 and Table 1). For measured data, we used
the Global Run-off Data Center (GRDC) (http://www.bafg.de/GRDC/, accessed on
1 June 2022) discharge dataset. For each of the gauged stations, we also extracted modeled
continuous streamflow data (1980 to 2012) from the Global Flood Awareness System (Glo-
FAS) [15] (https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?
tab=overview, accessed on 1 June 2022). Seven of the thirteen gauges provided complete
data for the period of record of 1980 to 2012. Data for six of the thirteen gauges were supple-
mented with GloFAS data if, for the overlapping period of the gauge and GloFAS annual
streamflow, the Nash–Sutcliffe Efficiency (NSE) statistic exceeded 0.50 and the percentage
bias (PBIAS) was between ±15 and ±25 [16]. Table 1 identifies the gauges with complete
records and gauges with supplemented GloFAS data. The streamflow data consisted of both
impaired and unimpaired gauges to increase the spatial coverage within the PRB. The use
of this streamflow data was justified based on intercorrelations between the thirteen gauges
for the 1980 to 2012 period of record (33 years or short period of record—SPOR), exceeding
99% significance for 72 of 78 combinations, with the six outliers achieving significance
levels ranging from 93% to 98%. A subset of six PRB gauges were identified with a period
of record of 1967 to 2012 (46 years or long period of record—LPOR) (Figure 1 and Table 1).

Table 1. Streamflow gauge information (gauge #, river, station name, country, latitude (o), longitude
(o), area (square kilometers), elevation (meters), GloFAS data supplemented, PRBQ SPOR R2, and
PRBQ LPOR R2).

Gauge # River Station Country Lat Lon Area Elev GloFAS PRBQ R2

(SPOR)
PRBQ R2

(LPOR)

1 Po, Fiume Pontelagoscuro IT 44.9 11.6 70,091 8 X 82%

2 Po, Fiume Boretto IT 44.9 10.6 55,183 20 X 88%

3 Poschiavino Le Prese CH 46.3 10.1 169 1015 54% 66%

4 Poschiavino La Roesa CH 46.4 10.1 14 1908 56%

5 Po, Fiume Piacenza IT 45.0 9.7 42,030 42 X 82%

6 Adda, Fiume Lake Como Outlet IT 45.8 9.4 4508 197 84% 94%

7 Riale Di Roggiasca Roveredo CH 46.2 9.2 8 1030 74% 81%

8 Ticino, Fiume Bellinzona CH 46.2 9.0 1515 270 83% 91%

9 Cassarate Pregassona CH 46.0 9.0 74 341 65% 75%

10 Ticino, Fiume Miorina IT 45.7 8.7 6655 190 X 81%

11 Riale Di Calneggia Cavergno CH 46.4 8.5 24 940 64% 81%

12 Tanaro, Fiume Ponte Di Nava FR 44.1 7.9 148 803 X 58%

13 Dora Baltea, Fiume Tavagnasco IT 45.5 7.8 3313 263 X 48%

The Old World Drought Atlas (OWDA) provides annual June–July–August (JJA) self-
calibrating Palmer Drought Severity Index (scPDSI) values for 5414 grid points across
Europe from 0 to 2012 AD [11]. Similar to [7], the current research utilized the OWDA
scPDSI as a proxy for PRB streamflow reconstructions and included 195 scPDSI cells within
a 450 km search radius of the centroid of the PRB.

SVD is a multivariate technique for identifying relationships between two spatial-
temporal fields [12]. In the field of hydrology, early applications of SVD included the evalu-
ation of sea surface temperatures (SSTs) and precipitation [17], and SSTs and drought [18].
Two matrices (a matrix of standardized scPDSI anomalies and a matrix of standardized
annual streamflow anomalies) were developed, in which the time dimension of each matrix
(i.e., 33 years for the SPOR or 46 years for the LPOR) must be equal. The cross-covariance
matrix was then computed (Figure 2—STEP 1), and SVD was applied (Figure 2—STEP 2),
which resulted in two matrices of singular vectors and one matrix of singular values

http://www.bafg.de/GRDC/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview
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(1st mode, 2nd mode, etc.). The squared covariance fraction (SCF) is a useful measure-
ment of the importance of modes [12]. Each singular value was squared and divided by
the sum of all squared singular values to produce a fraction (or percentage) of squared
covariance for each mode. If the leading three (e.g., 1st, 2nd, and 3rd) modes explain a sig-
nificant amount (i.e., >80%) of the variance in the two fields, then SVD can be utilized [19]
(Figure 2—STEP 2). The two matrices of singular vectors were examined, generally referred
to as the left (i.e., scPDSI) matrix and the right (i.e., streamflow) matrix. The first column of
the left matrix (1st mode) was projected onto the standardized scPDSI anomalies matrix,
and the first column of the right matrix (1st mode) was projected onto the standardized
streamflow anomalies matrix. This resulted in the 1st temporal expansion series (TES) of
the left and right fields, respectively, and they are referred to as the left 1st TES and the
right 1st TES (hereafter referred to as PRBQ). Each TES vector has dimensions of one by the
number of years (i.e., either 33 years or 46 years). The left heterogeneous correlation values
(for the 1st mode) were determined by correlating the scPDSI values of the left matrix with
PRBQ, and utilizing the approaches of [17,18], heterogeneous correlation figures display-
ing significant correlation values for scPDSI were developed (Figure 2—STEP 3). While
SVD is an incredibly effective statistical tool for data reduction and identifying significant
scPDSI grid points, the PRBQ represents a single vector of annual streamflow variability,
accounting for all gauges (either thirteen or six) in the PRB.
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SVD identified significant scPDSI cells for both SPOR and LPOR, and cells of 99%
significance or greater were considered for use in the reconstruction model. Prior to input
into the reconstruction model, a final prescreening method was applied to investigate
temporal stability, per [20], which consisted of performing correlations over moving win-
dows between the PRBQ and the retained scPDSI cells for both the SPOR and LPOR
(Figure 2—STEP 4). A thirty-year moving correlation window was selected by [21,22].
However, in [22] the average streamflow record was ~77 years in length. Thus, the thirty-
year moving correlation window was ~40% of the total period of record. The authors
selected a conservative and more rigorous moving correlation window of approximately
one third (~33%) for the SPOR (an 11-year moving correlation window) and the LPOR (a
15-year moving correlation window). A stability analysis ensured that reliable and practical
streamflow reconstructions were generated.

A forward and backward stepwise linear regression (SLR), per [21–23] (Figure 2—STEP 5),
was used to develop models for the reconstructions, and various statistics were used to
test model skill (Figure 2—STEP 6). R2 (model variance), R2 predicted (drop-one cross-
validation) [24], the variation inflation factor or VIF (1 to 10 reveals a low correlation
between predictors and predictand) [25], the Durbin–Watson (D–W) statistic, which tests
for autocorrelation [26], and the sign test, which counts the number of agreements and
disagreements between observed and reconstructed (modeled) flow, were used for model
validation. The modeled flow was standardized, and a 30-year end-year filter was applied
(Figure 2—STEP 7).

3. Results

SVD Model: The cumulative SCF for the first three modes was 98% for the SPOR and
99% for the LPOR, and generally, if the first three modes explain a significant (greater than
80%) amount of the variance between the two fields, then SVD can be applied to determine
the strength of the coupled variability present [19]. The 1st mode of SCF was 90% for the
SPOR and 94% for the LPOR. Thus, only results for the first mode were provided.

scPDSI—For the 1st mode, scPDSI correlation maps for both the SPOR and LPOR
were developed, and cells exceeding 99% significance (SPOR—81 cells and LPOR—63 cells)
were identified (Figure 3a,b).
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Streamflow—For both the SPOR (thirteen gauges) and LPOR (six gauges), all gauges
exceeded 99% significance. The PRBQ vectors, generated via SVD for use as regional
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reconstructions, were developed for both the SPOR and LPOR. For the SPOR, the PRBQ
vector was correlated with each of the thirteen gauges, and the R2 values are provided in
Table 1. This was repeated for the LPOR such that the PRBQ vector was correlated with
each of the six gauges, and the R2 values are provided in Table 1. As displayed in Table 1,
the SVD-generated PRBQ vector, for both the SPOR (average R2 = 71%) and the LPOR
(average R2 = 81%), captures a high degree of the variability of the individual streamflow
gauges. Thus, the use of the PRBQ vector was appropriate as a regional representation of
PRB streamflow variability for both the SPOR and LPOR.

Predictor Prescreening: For the SPOR, the 11-year moving-window correlation analysis
of the 81 scPDSI cells and the PRBQ vector identified by SVD, 39 scPDSI cells were deemed
stable and were considered for the SLR model (Figure 3a). For the LPOR, the 15-year
moving-window correlation analysis of the 63 scPDSI cells and the PRBQ vector identified
by SVD, 55 scPDSI cells were deemed stable and were considered for the SLR model
(Figure 3b). It was notable that the majority of the stable cells were spatially located
west and within the PRB, verifying the general climate (moisture) signal of a west-to-
east movement.

Reconstruction Models: The reconstruction of the SPOR regional PRBQ annual stream-
flow vector resulted in exceptional statistical skill. The SLR model retained three scPDSI
cells (#44, #111, and #140) (Figure 3a). Model results of R2 = 0.77; R2 predicted = 0.69;
VIF = 1.0; D-W = 1.71 (Pass); Sign Test 15+/18- (Pass) and a model equation of
PRBQ − Modeled (SPOR) = 0.301 + 0.783 * scPDSI (44) + 0.477 * scPDSI (111) + 1.100 * scPDSI
(140) were obtained. The reconstruction of the LPOR regional PRBQ annual streamflow
vector again resulted in strong statistical skill. The SLR model retained three scPDSI cells
(#14, #54, and #167) (Figure 3b). Model results of R2 = 0.65; R2 predicted = 0.56; VIF = 1.0;
D–W = 1.69 (Pass); Sign Test 22+/24- (Pass) and a model equation of
PRBQ − Modeled (LPOR) = −0.020 + 0.355 * scPDSI (14) + 0.454 * scPDSI (54) + 0.795 *
scPDSI (167) were obtained.

The SPOR and LROR models were standardized, and a 30-year end-year filter (mov-
ing average) was applied (Figure 4). Referring to Figure 4, each reconstruction generally
captured similar drought and pluvial periods. The end of the 5th century to the begin-
ning of the 6th century reveals a megadrought period peaking around ~530 AD, with
the SPOR model showing a greater decline when compared to the LPOR model. Interest-
ingly, the most robust pluvial period immediately followed this megadrought and peaked
around ~610 AD.

The relative agreement (visual assessment of Figure 4) between the two models (SPOR
and LPOR) was encouraging, given (1) two different periods of record were evaluated and
independent regression models were generated for each; (2) the gauges used for the SPOR
reconstruction were spatially distributed across the entire PRB, while the gauges used for
the LPOR reconstruction were generally more associated with Alpine streamflow; (3) each
model (SPOR and LPOR) retained three scPDSI proxies, and for each model the retained
scPDSI proxies (cells) differed; and (4) the reconstruction skills for both models were strong,
and each model passed a rigorous assessment of multicollinearity and over-fitting.
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LPRO average. The black line represents the 30-year end-year-filtered streamflow, while the gray
lines in (a,b) represent annual flows.

4. Discussion

In a recent paleo study in which streamflow was reconstructed for multiple watersheds
across Europe [27], drought years were consistently identified in 1540, 1669, and 1921. We
compared the results from the PRB to [27] and, per Table 2, the 1921 drought ranked #3, the
1540 drought ranked #11, and the 1669 drought ranked #130. Thus, the current research
identified similar drought years to [27]. The 6th century appears to be the driest period in
the ~2000 year reconstruction, as multiple drought events for various filters are displayed in
Table 2, with the most extreme megadrought being from 503 to 532 (30-year period). Future
research will investigate the current (2022) drought and, in particular, the development
of the regional reconstructions of the PRB per the current research, coupled with detailed
climatological and hydrological studies, will allow for the quantification of this drought
and the comparison of 2022 to both observed and paleo-derived streamflow records.



Hydrology 2022, 9, 163 9 of 11

Table 2. Drought periods (1-year, 5-year, 10-year, 20-year, and 30-year) for the PRB regional recon-
struction from 0 to 2012 AD. The number in the parenthesis represents the drought period ranking.

Time Period
(AD) 1-Year 5-Year 10-Year 20-Year 30-Year

0 to 100

100 to 101

201 to 300 242 (4) 249–245 (2) 254–235 (4) 254–225 (2)

301 to 400

401 to 500

501 to 600 527–523 (5) 512–503 (4) 511–492 (2) 532–503 (1)

601 to 700

701 to 800

801 to 900 848–839 (5)

901 to 1000

1001 to 1100 1067–1048 (3) 1073–1044 (3)

1101 to 1200

1201 to 1300

1301 to 1400 1385 (1)

1401 to 1500 1426–1406 (5) 1444–1415 (4)

1501 to 1600 1503 (2) 1540 (11)

1601 to 1700 1669 (130) 1687–1683 (1) 1687–1678 (2)

1701 to 1800 1784 (5)

1801 to 1900 1865–1861 (3) 1865–1856 (1) 1875–1856 (1) 1876–1847 (5)

1901 to 2012 1921 (3) 1950–1946 (4) 1952–1943 (3)

5. Conclusions

A skillful reconstruction of the PRB annual regional streamflow was developed. Obertelli
(2020) [6] developed annual streamflow reconstructions for GloFAS sites (27 grid points) with
an average R2 of 0.36. The current research developed two reconstructions of PRB annual
regional streamflow that achieved R2 values of 0.77 and 0.65. The improvement in skill was
likely attributed to including scPDSI cells within a 450 km search radius, per [7], whereas [6]
limited the inclusion of scPDSI cells to those within the watershed. Five of the six scPDSI
cells retained in the SLR models were spatially located outside the PRB watershed, thus
limiting the search to (only) scPDSI cells within the PRB watershed, per [6], likely limited
the reconstruction skill. The novel use of SVD allowed for the development of regional PRB
annual streamflow vectors for both the SPOR and LPOR, which were highly correlated with
the individual PRB gauges. We suspect that a regional representation of PRB streamflow
improved statistical skill when compared to individual gauges or GloFAS grid points. The
two reconstructions of annual PRB regional streamflow were developed independently, yet
displayed similar temporal variability, which was encouraging.
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