Hydrological Sciences Journal
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/thsj20

Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France
Abdoul Aziz Oubeidillah a, Glenn Tootle a & Sally-Rose Anderson a
a Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, 37996, USA
Available online: 16 Mar 2012

To cite this article: Abdoul Aziz Oubeidillah, Glenn Tootle & Sally-Rose Anderson (2012): Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France, Hydrological Sciences Journal, DOI:10.1080/02626667.2012.659250

To link to this article: http://dx.doi.org/10.1080/02626667.2012.659250

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France

Abdoul Aziz Oubeidillah, Glenn Tootle and Sally-Rose Anderson

Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
oaziz@utk.edu

Received 1 December 2010; accepted 29 June 2011; open for discussion until 1 October 2012

Editor Z.W. Kundzewicz; Associate editor H. Aksoy

Abstract The identification of Atlantic Ocean (AO) climatic drivers may prove valuable in long lead-time forecasting of streamflow in the Adour-Garonne basin in southwestern France. Previous studies have identified the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) as drivers of European hydrology. The current research applied the singular value decomposition (SVD) statistical method to AO sea-surface temperatures (SSTs) to identify the primary AO climatic drivers of the Adour-Garonne basin streamflow. Annual and seasonal streamflow volumes were selected as the hydrological response, while average AO SSTs were calculated for three different 6-month averages (January–June, April–September and July–December) for the year preceding streamflow. The results identified a region along the Equator as the probable driver of the basin streamflow. Additional analysis evaluated the influence of the AMO and NAO on Adour-Garonne basin streamflow.

Key words singular value decomposition (SVD); sea-surface temperature (SST); teleconnection; streamflow; hydrology; climate; Adour-Garonne; France

Températures de surface de l’Océan Atlantique et variabilité des débits régionaux dans le bassin Adour-Garonne (France)

Mots clés décomposition en valeurs singulières (DVS); température de surface de la mer (TSM); téléconnexion; débits; hydrologie; climat; Adour-Garonne; France

1 INTRODUCTION

The Adour-Garonne basin is the fifth largest French watershed with an area of 116 000 km² (Fig. 1). The main river in the basin is the Garonne River, the third largest in France based on annual flow rate. Approximately 6.5 million people, a tenth of the total French metropolitan population, rely on its water for domestic, agricultural and industrial use with the demand increasing annually.

This basin is dominated by the Pyrenees and Massif Central mountains. The basin’s hydrological system is fed by the Garonne and Adour rivers, which originate from the Pyrenees mountain ranges. The Tarn, Lot, Dordogne and Charente rivers all flow from
fig. 1 Map of the Adour-Garonne Basin with locations of streamflow stations. The numbers correspond to those in Table 1.

Fig. 1 Map of the Adour-Garonne Basin with locations of streamflow stations. The numbers correspond to those in Table 1.

the Massif Central mountain range. An identification and understanding of any underlying Atlantic Ocean climatic driver will benefit the water availability prediction and management for this region.

The results led to the use of climatic variables as a predictor in long lead-time streamflow forecast models (Uvo et al. 2002, Tootle and Piechota 2004, Grantz et al. 2005, Pagano and Garen 2006, Tootle et al. 2007, Soukup et al. 2009). Previous studies evaluating the relationship between the Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO) climate indices and hydrological response neighbouring regions to the Adour-Garonne basin were inconclusive.

Durand et al. (2009) used the French model SAFRAN, which simulates atmospheric conditions related to snowpack, to study the evolution of snowpack given the elevation and slope in the French Alps and Pyrenees. They could not establish a relationship between the NAO and El Niño-Southern Oscillation (ENSO) and snow cover in the French Alps and Pyrenees. Massei et al. (2007) used continuous
wavelet transforms of seven precipitation time series and compared them with NAO wavelet transforms. They could not establish a link between NAO and rainfall as precipitation records did not contain easily retrievable NAO-like components in northwestern France. Lespinas et al. (2010) identified an NAO influence on precipitation; however, it was not strong enough to influence long-term trends in their study of rivers in southern France.

All the study areas in the work cited above were adjacent to the Adour-Garonne basin. Because of its hydrological importance, numerous studies have been conducted to investigate climate change impacts on this region’s hydrology (Voirin-Morel 2003, Caballero et al. 2007, Hau 2008, Tisseuil 2009).

Bretherton et al. (1992) concluded that the singular value decomposition (SVD) approach was simple to use and preferable for general use, while Wallace et al. (1992) found that SVD was a powerful technique that isolates the most important modes of variability. Various studies have used SVD to evaluate sea-surface temperature (SST) and hydrological variability (Uvo et al. 1998, Enfield and Alfaro 2000, Giannini et al. 2000, Wang and Ting 2000, Rajagopalan et al. 2000, Rodriguez-Fonseca and de Castro 2002, Martin et al. 2004, Shabbar and Skinner 2004, Tootle and Piechota 2006, Tootle et al. 2008, Aziz et al. 2010). These studies investigated SST and hydrological (e.g. snowpack, drought, precipitation, streamflow) response in the USA, Canada and Europe. While the use of principal components analysis (PCA) is very common in this type of analysis, SVD has the advantage of being able to evaluate the cross-covariance matrix of two spatial–temporal fields to identify similarities between them. In contrast, PCA evaluates only one spatial–temporal field. Additionally, the use of SVD with SSTs and streamflow eliminates the limitations associated with using pre-defined SST regions (e.g. AMO) of climate variability and the resulting streamflow response to phases (e.g. warm or cold) of these climate signals.

Therefore, the hypothesis of the current research is that the Atlantic Ocean SST region (or regions) identified may be used as a long lead-time predictor of Adour-Garonne basin streamflow. Similar to the Niño 3.4 index representing the ENSO, an index can be developed for the Atlantic Ocean SST region (or regions) identified and this index may be used as a predictor in a statistically based long lead-time streamflow forecast model.

The current research aimed to provide a comprehensive—i.e. three Atlantic Ocean SST (predictor) periods and two Adour-Garonne basin streamflow (predictand) periods—first-time analysis of Atlantic Ocean SSTs and the Adour-Garonne basin streamflow variability and the identification of Atlantic Ocean SST regions that influence streamflow. This study applied SVD to Atlantic Ocean SSTs and Adour-Garonne basin streamflow in an attempt to identify climatic drivers and, perhaps, a useful long lead-time predictor of streamflow. Although not previously identified as a climatic driver of hydrological response in neighbouring regions to the Adour-Garonne basin, an evaluation of Adour-Garonne basin streamflow and climate indices (AMO and NAO) was also performed and compared to previous research efforts. While previous publications evaluated the impact of climate change on water resources of the Adour-Garonne basin (Lehenaff 2002, Caballero et al. 2003, 2007), this study focused solely on the possible teleconnection between the Atlantic Ocean SSTs and the regional streamflow.

2 DATA
Atlantic Ocean sea-surface temperature (SST) data were obtained from the National Climatic Data Center website. The National Oceanic and Atmospheric Administration (NOAA) extended reconstructed SST Version 3b from Smith et al. (2008) were downloaded from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html. These data consist of a $2^\circ \times 2^\circ$ grid of average monthly SSTs from January 1854 to February 2010. For this study, the SST region spanning 20°S–70°N and 80°W–2°W was used. After land masses were removed, this resulted in 1361 SST cells being identified. Average Atlantic Ocean SSTs were calculated for three different 6-month periods: January–June (JFMAMJ), April–September (AMJJAS) and July–December (JASOND). The period of record for the SSTs is 1960–2005 (46 years).

Streamflow data were obtained from the hydrology website of the Ministry of Ecology and Sustainable Development (Ministère de l’Ecologie
Table 1 List and description of streamflow stations. The numbering corresponds to the station numbers shown on the figure maps.

<table>
<thead>
<tr>
<th>Station order</th>
<th>Station no.</th>
<th>Station name</th>
<th>Lat*</th>
<th>Lon*</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q3120010</td>
<td>L’Adour à Saint-Vincent-de-Paul</td>
<td>1862643</td>
<td>326445</td>
<td>Landes (40)</td>
</tr>
<tr>
<td>2</td>
<td>Q7002910</td>
<td>Le Gave d’Oloron à Oloron-Sainte-Marie [Oloron-SN]</td>
<td>1804085</td>
<td>360293</td>
<td>Pyrénées-Atlantiques (64)</td>
</tr>
<tr>
<td>3</td>
<td>Q7412910</td>
<td>Le Gave d’Oloron à Escos</td>
<td>1832099</td>
<td>329975</td>
<td>Pyrénées-Atlantiques (64)</td>
</tr>
<tr>
<td>4</td>
<td>Q9164610</td>
<td>La Nive des Aludèdes à Saint-Étienne-de-Baïgorry</td>
<td>1804972</td>
<td>300932</td>
<td>Pyrénées-Atlantiques (64)</td>
</tr>
<tr>
<td>5</td>
<td>P0190010</td>
<td>La Dordogne à Bort-les-Orgues</td>
<td>2045815</td>
<td>612807</td>
<td>Corrèze (19)</td>
</tr>
<tr>
<td>6</td>
<td>P0364010</td>
<td>La Santiore à Condat [Roche-Pointue]</td>
<td>2037176</td>
<td>632571</td>
<td>Cantal (15)</td>
</tr>
<tr>
<td>7</td>
<td>P1154010</td>
<td>La Luzège à Lamazère-Basse [Pont de Bouyges]</td>
<td>2042504</td>
<td>583744</td>
<td>Corrèze (19)</td>
</tr>
<tr>
<td>8</td>
<td>P1502510</td>
<td>La Maronne à Pleaux [Enchanet]</td>
<td>2009197</td>
<td>588829</td>
<td>Cantal (15)</td>
</tr>
<tr>
<td>9</td>
<td>P3021010</td>
<td>La Vézère à Bugeat</td>
<td>2067161</td>
<td>567826</td>
<td>Corrèze (19)</td>
</tr>
<tr>
<td>10</td>
<td>P3502510</td>
<td>La Corrèze à Tulle [Pont des soldats]</td>
<td>2030679</td>
<td>556281</td>
<td>Corrèze (19)</td>
</tr>
<tr>
<td>11</td>
<td>P5140010</td>
<td>La Dordogne à Bergerac</td>
<td>1984849</td>
<td>453459</td>
<td>Dordogne (24)</td>
</tr>
<tr>
<td>12</td>
<td>O0015310</td>
<td>Le Maudan à Fos</td>
<td>1764001</td>
<td>469828</td>
<td>Haute-Garonne (31)</td>
</tr>
<tr>
<td>13</td>
<td>O1115010</td>
<td>L’Artigue à Auzat [Cibelle]</td>
<td>1745647</td>
<td>524405</td>
<td>Ariège (09)</td>
</tr>
<tr>
<td>14</td>
<td>O1900010</td>
<td>La Garonne à Portet-sur-Garonne</td>
<td>1836493</td>
<td>525406</td>
<td>Haute-Garonne (31)</td>
</tr>
<tr>
<td>15</td>
<td>O3121010</td>
<td>Le Tarn à Monbrun [Pont de Monbrun]</td>
<td>1926545</td>
<td>692591</td>
<td>Lozère (48)</td>
</tr>
<tr>
<td>16</td>
<td>O3141010</td>
<td>Le Tarn à Mostuéjous [La Muse]</td>
<td>1912540</td>
<td>670860</td>
<td>Aveyron (12)</td>
</tr>
<tr>
<td>17</td>
<td>O4102510</td>
<td>L’Agout à Fraisse-sur-Argout</td>
<td>1846445</td>
<td>613844</td>
<td>Hérault (34)</td>
</tr>
<tr>
<td>18</td>
<td>O5292510</td>
<td>L’Aveyron à Laguépie [1]</td>
<td>1905684</td>
<td>570939</td>
<td>Tarn-et-Garonne (82)</td>
</tr>
<tr>
<td>19</td>
<td>O5344010</td>
<td>Le Vioulou à Salles-Curan [Trébons-Bas]</td>
<td>1912229</td>
<td>638138</td>
<td>Aveyron (12)</td>
</tr>
<tr>
<td>20</td>
<td>O5572910</td>
<td>Le Vair à Laguépie</td>
<td>1904680</td>
<td>570581</td>
<td>Tarn-et-Garonne (82)</td>
</tr>
<tr>
<td>21</td>
<td>O7131510</td>
<td>Le Lot à Lassouts [Castelnaud]</td>
<td>1944600</td>
<td>642030</td>
<td>Aveyron (12)</td>
</tr>
<tr>
<td>22</td>
<td>O7272510</td>
<td>La Truyère au Malzieu-Ville [Le Soulier]</td>
<td>1982106</td>
<td>680007</td>
<td>Lozère (48)</td>
</tr>
<tr>
<td>23</td>
<td>O7354010</td>
<td>La Lander à Saint-Georges</td>
<td>2001559</td>
<td>662432</td>
<td>Cantal (15)</td>
</tr>
<tr>
<td>24</td>
<td>O7502510</td>
<td>La Truyère à Neuviègise [Grandval]</td>
<td>1991614</td>
<td>658173</td>
<td>Cantal (15)</td>
</tr>
<tr>
<td>25</td>
<td>O7635010</td>
<td>La Bromme à Brommat [EDF]</td>
<td>1981284</td>
<td>627222</td>
<td>Aveyron (12)</td>
</tr>
</tbody>
</table>

* Lambert II coordinate system (France).

et du Developpment Durable) at http://www.hydro.eaufrance.fr. Streamflow time series in this database are produced by regional services called DIREN. For this study, unimpaired streamflow stations (stations identified with no anthropogenic influences) were selected. While there were many streamflow stations with records extending further back in time, many had large gaps of missing data or were discontinued in recent times. Only streamflow stations with complete records were evaluated. The selected period of record for streamflow (1960–2006) balanced the number of stations that had complete records with an acceptable length of record. This resulted in 25 streamflow stations being used in the current research (Table 1).

An evaluation of the distribution of monthly streamflow identified that the period of November to March resulted in the highest streamflow (Fig. 2). This was confirmed by other studies such as Caballero et al. (2007), which identified the July–October period as the low-flow period. Thus, streamflow for the November–March period along with the calendar year period were evaluated in the study. Average monthly streamflow rates (in m³/s) were converted into the percentage of total annual flow.
to either calendar year streamflow volume or seasonal (November–March) streamflow volume. Two data sets of 25 streamflow station data were created; the first consisted of annual streamflow volume (in 10⁶ m³/s, or MCM) from January–December of the same year, and the second of streamflow volume (10⁶ m³/s) for November of the previous year to March of the current year. This resulted in a wide range of lead times varying from 0 to 6 months.

The anomalies of the data sets were calculated. For the Atlantic Ocean SSTs, the deviation of the seasonal means from the long time average were calculated for each cell, and for the streamflow, the anomalies were calculated for each station. Each of the data sets was then standardized. These standardized anomalies of the data sets were used in this study. These data sets were then detrended by removing the best straight line fit from the data vectors. Consequently, the correlation results will be independent of any trend that may be present in the data sets.

The Atlantic Ocean oceanic–atmospheric climatic phenomena data used in this study were the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO). The AMO, is an oscillation observed in the northern part of the Atlantic Ocean with long-duration periods that last between 20 and 40 years. It is composed of a cold phase and a warm phase. It is acknowledged to affect air temperature and precipitation over North America and Europe and its footprint can also be identified in Atlantic hurricane frequency data (Enfield et al. 2001). The AMO data used in the analysis are the unsmoothed time series from the Kaplan SST Version 2 calculated at NOAA/ESRL/PSD1 and obtained from http://www.cdc.noaa.gov/Pressure/Timeseries/Data/amo.long.data.

The NAO is a winter climate variability defined as the normalized difference in sea-level atmospheric pressure between stations in Iceland and in the Azores. An extended version of the NAO index can be derived by using a station at the southwest part of the Iberian Peninsula (Hurrell 1995). The NAO is also known to affect Atlantic hurricane strength and direction. The data used in this analysis were obtained from http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nao.long.data.

The average monthly values for the climatic indices (AMO and NAO) were averaged for each of the 6-month (JFMAMJ, AMJJAS, JASOND) predictor periods for the same period of record (1960–2005) as the Atlantic Ocean SSTs.

3 METHODS

3.1 Correlation of streamflow data with AMO and NAO seasonal indices

To evaluate the relationship between the streamflow stations and the Atlantic Ocean climate indices AMO and NAO, simple correlation analyses were performed. The seasonal (JFMAMJ, AMJJAS, JASOND) average values of the climate indices were evaluated with all streamflow stations using Pearson correlation. Thus, the relationship is limited to a pre-determined region of the Atlantic Ocean. To eliminate this limitation, SVD was used to evaluate the relationship between the Atlantic Ocean SST region covering the area between 20°S–70°N and 80°W–2°W and streamflow.

3.2 Singular value decomposition (SVD)

While Bretherton et al. (1992) provides a detailed discussion of SVD methods, in the current research, SVD was used in the form:

\[(U, S, V) = \text{svd}(X)\] (1)

This results in a diagonal matrix, S, of the same dimension as X. The diagonal elements of S were non-negative and were arranged in decreasing order. It also produces the unitary matrices, U and V which were orthogonal singular vectors and were called Left and Right, respectively. The matrices U, S and V were such that:

\[X = U \times S \times V^{-1}\] (2)

The matrix X (m × n) with m ≥ n, was the cross-covariance matrix created from the two spatial–temporal matrices used for the analysis. The matrices must have the same temporal size, while the spatial elements may vary. The matrices can be square or diagonal and it is important to note that the two spatial–temporal fields must consist of detrended standardized anomalies.

In this study, \(s_{\text{sst}}(x,t)\) was the left-side matrix composed of x SST anomaly data points over a period \(T\), and \(Q(y,t)\) was the right-side matrix composed of y streamflow stations, Q anomalies over the same length period T, with x and y representing the space and t the time. The cross-covariance matrix, \(X\), was obtained by multiplying the left-side matrix by the transpose of
the right-side matrix and dividing the product by the number of years.

\[X = \frac{\text{sst} \times Q^{-1}}{T} \quad (3) \]

The modes were determined by the square covariance fractions (SCF) matrix, which was analogous to the eigenvalues in principal components analysis (PCA). The SCF matrix was obtained by dividing each squared element, \(S_k \) of \(S_k \) by the sum of all squared elements, arranged in descending order:

\[\text{SCF} = \frac{S_k^2}{\sum S_k^2} \quad (4) \]

Each value indicates a mode and the amount of variance explained in the corresponding mode, with the first mode accounting for the largest percentage of the variation and the second mode accounting for the second-most variation, and so on. All the modes were uncorrelated. The second mode was orthogonal to the first mode which was orthogonal to the third mode, and so on. The temporal expansion series (TES), also known as time series, were analogous to the principal components scores in PCA, and were obtained by projecting the data matrix (left side, right side) into each eigenvector of the corresponding unitary matrix (Left, Right). Consider the Left singular vectors, \(L_k \) and the left-side matrix \(\text{sst}(x,t) \). The left temporal expansion series (LTES) \((A_k) \) results from:

\[A_k = L_k \times \text{sst}(x,t) \quad (5) \]

The procedure was the same for the right temporal expansion series \((B_k) \).

The temporal expansion series were then used to create heterogeneous correlation maps by correlating each time series to the opposing side data set. The following is an example for a left heterogeneous correlation:

\[r_k = r[\text{sst}(x,t), B_k] \quad (6) \]

Single value decomposition has been shown to detect correlations in data, even when the data set has significant “noise”. The terms Left and Right were arbitrarily used for easier comprehension. Interchanging them at the beginning or using different nomenclature would be of no consequence to the results.

4 RESULTS

4.1 Correlations with Atlantic Ocean climate indices

4.1.1 AMO Correlation of the AMO index and streamflow, for the various seasons and lead-times, did not result in a consensus statistical relationship as few streamflow stations were identified as significant at 90% level \((p < 0.1)\). When using calendar year streamflow as the predictand, nine (of 25) streamflow stations were significant for the first predictor period (JFMAMJ), seven for the second predictor period (AMJJAS) and nine for the third predictor period (JASOND). As may be seen in Table 1, five stations—Q7002910 (2), O1900010 (14), O7272510 (22), O7354010 (23) and O7502510 (24)—were found to be significant for all three periods. For the November–March streamflow period, fewer streamflow stations were identified as significant. One station was significant for the first predictor period (JFMAMJ) and one station was significant for the second predictor period (AMJJAS). The JASOND was not correlated due to overlap with the predictand period (November–March). The streamflow stations that displayed statistical significance with the AMO exhibited a negative correlation. Thus, a positive phase of the AMO results in a decrease in streamflow in the region, and vice versa.

4.1.2 NAO Correlation of the NAO index was similar to that of the AMO index. Eight annual streamflow stations were significant for the first (JFMAMJ) period, five for the second (AMJJAS) period, and zero for the third (JASOND) period. When using the November–March streamflow, only five stations were significant for the first (JFMAMJ) and none were significant for the second (AMJJAS) predictor period. The JASOND period was not correlated due to overlap with the predictand period (November–March).

The streamflow stations that showed a significant correlation with the NAO exhibited a negative relationship; thus, a positive phase of the NAO results in a decrease in streamflow in the region, and vice versa. Interestingly, Hurrell (1995) identified a similar finding on the correlation between euro-Mediterranean region precipitation and the NAO. Struglia et al. (2004) found similar negative correlations between the NAO and streamflow stations discharging into the Mediterranean Sea, which include stations adjacent to the Adour-Garonne region. Given the lack of an AMO or NAO climate signal in the Adour-Garonne
basin streamflow, it is highly unlikely that these established climate signals, when used in a long lead-time statistical streamflow forecast model, will produce acceptable (skilful) results.

4.2 SVD analysis

The cumulative SCF for the first three modes was above 90% in all cases. Generally, if the leading three modes explain a significant (greater than 80%) amount of the variance between the two fields, then SVD can be applied to determine the strength of the coupled variability present (Newman and Sardeshmukh 1995). Therefore, SVD can be applied in the current research efforts.

The results of this study show that the majority of the variability in the data is explained in the first mode. The first mode square covariance fractions (SCF) ranged from 75% to 85%. Given the vast majority of the variability was explained in the first mode, only figures for the first mode were provided.

4.2.1 Annual streamflow For the annual streamflow, the cumulative square covariance fractions, for the first three modes, for the three SST predictor periods (JFMAMJ, AMJJAS and JASOND) were 94, 95 and 96%, respectively (Fig. 3).

For the first period (JFMAMJ) Atlantic Ocean SSTs, 22 out of the 25 stations were significant at 90% for the first mode (first mode SCF = 85%). The streamflow correlation values were positive (see Fig. 3, right panel): 524 of the 1361 SST cells were significant at 90% in the first mode. The significant SST cells are in a region along the Equator between Brazil and Senegal, and the eastern Atlantic near northwest Africa. A small region just east of North America, almost centred at 30°N, 15°W, was also identified. All of the SST correlation values were negative (see Fig. 3, left panel). In SVD, the opposite signs identified in the streamflow stations and SST regions reveal that they behave in an opposite manner. When the significant Atlantic Ocean SSTs regions identified increase in temperature, the significant Adour-Garonne basin streamflow stations identified decrease in runoff volume, and vice versa.

For the second period (AMJJAS) Atlantic Ocean SSTs, 23 of the 25 streamflow stations were identified as 90% significant and displayed a positive relationship (Fig. 3, right) in the first mode (first mode SCF = 88%). Non-significant streamflow stations observed in this period were similar to those identified in the first period. An SST region, similar to the one identified in the first period, was identified. However, the small region east of North America shifted slightly north. In all, about 600 SST cells exhibited negative correlation (Fig. 3, left).

Results from the third 6-month period (JASOND) Atlantic Ocean SSTs were almost identical to the second period results in that 23 of the 25 streamflow stations were 90% significant and displayed a positive relationship (Fig. 3, right) in the first mode (first mode SCF = 89%). The identified Atlantic Ocean SST region exhibited a similar pattern as the first two SST predictor periods with a region extending down the west coast of Europe and Africa and along the Equator between Brazil and Africa. In addition, the SST pattern spanned across the Atlantic Ocean, linking the previously identified region east of North America with the region along the west coast of Europe just above the 30th parallel, covering the Azores islands. In all, about 600 SST cells had negative correlation values (Fig. 3, left).

4.2.2 November–March streamflow For this period, the cumulative square covariance fractions for the three periods (JFMAMJ, AMJJAS and JASOND) were 92, 93 and 93%, respectively (Fig. 4).

For the first period (JFMAMJ) Atlantic Ocean SSTs, 20 of the 25 stations were significant at 90% for the first mode (first mode SCF = 77%). The streamflow correlation values were positive (Fig. 4, right panel). Approximately 300 of the 1361 SST cells were significant at 90% in the first mode and had negative correlation values (Fig. 4, left panel). The significant SST cells are in a region along the Equator between Brazil and Senegal, a small region of the east coast of North America and a region northwest of Europe.

For the second period (AMJJAS) Atlantic Ocean SSTs, 20 of the 25 streamflow stations were identified as 90% significant in the first mode (first mode SCF = 74%). The streamflow correlation values were positive (Fig. 4, right). Similar non-significant streamflow stations observed in the first period were also not significant in the second period. An SST region similar to the one observed in the first period was also identified. In addition, another SST region covering the Azores islands, just above the 30th parallel, was also observed. In all, about 300 SST cells had negative correlation values (Fig. 4, left).

The third SST period (JASOND) was not evaluated because it overlapped with the predictand period.
5 DISCUSSION AND CONCLUSIONS

The results identified no clear relationship between established Atlantic Ocean climate indices (AMO, NAO) and streamflow in the Adour-Garonne basin, which confirmed previous research in adjacent regions. As a result of the eight subsequent evaluations of Atlantic Ocean SSTs and Adour-Garonne basin streamflow detailed above, it appears that the streamflow in the Adour-Garonne basin is influenced by Atlantic Ocean SSTs along the equatorial region between Brazil and the west coast of Africa, and a region off the west coast of Europe.

As discussed above, it is important to note the nature of the relationship between the Atlantic Ocean...
SST regions and the Adour-Garonne basin streamflow stations by observing the signs of the correlation values for each data set. By analysing the resulting data and figures, it was apparent that the identified Atlantic Ocean SST regions and the Adour-Garonne basin streamflow stations have an opposite relationship. This was explained because the SST regions show negative correlation values and the streamflow stations show positive correlations.

For the long lead-time analysis, the majority of higher SST correlation values were consistently concentrated along the Equator. Increasing the lag time between the SST periods and the streamflow period from 0 to 6 months identified a similar Atlantic Ocean SST equatorial region. Interestingly, the signal was stronger (higher correlations) for the longer lag time than for the shorter lag time.

Additionally, an SST time series index was created for the Atlantic Ocean region spanning 10°S to 4°N and 30°W to 2°W, by taking the annual average of all the cell SSTs within that region. This time series was then correlated to each streamflow station. All but five stations resulted in significant correlation (r) values ranging from -0.26 to -0.49. It is

![Fig. 4 Heterogeneous correlation figures (first mode) for: (a) JFMAMJ and (b) AMJJAS, and seasonal (November–March) when applying SVD to the previous year Atlantic Ocean SSTs (left) and streamflow (right).](image-url)
interesting to note that the correlation test shows a negative relationship similarly to the SVD analysis results.

Future research may focus on the use of a non-parametric or regression-based long lead-time streamflow forecast model (Hastenrath et al. 1984, Tootle and Piechota 2004, Tootle et al. 2007, Soukup et al. 2009) for Adour-Garonne basin streamflow. Additionally, future research efforts may focus on determining a physical explanation of the results (Atlantic SST regions identified) found in this study by examining z500 geopotential height winds as well as global circulation phenomena. Li (2000) stated that the physical mechanisms affecting the inter-annual and inter-decadal climate variability in the tropical Atlantic Ocean are not yet understood. The paper also identified two modes of variability, and the one centered in the equatorial region with ENSO-like dynamics involving the thermocline depth of the Ocean and the atmosphere’s trade winds, could be responsible. Similar results were found by Chang et al. (1997), who also pointed out that the equatorial region of the Atlantic SST has been found in many studies to influence the variability of Northeast Brazil and Sahel rainfall (Moura and Shukla 1981, Hastenrath 1984, Folland et al. 1986).

Acknowledgements The authors wish to thank Christian Viel of the Production Department at Météo-France for his outstanding support and suggestions. The authors would also like to extend their appreciation to the Ministère de l’E´cologie et du Developpment Durable for granting access to the HYDRO database. The research is supported by the University of Tennessee, Knoxville and Oak Ridge National Laboratory Joint Directed Research and Development (JDRD) program and the National Science Foundation P2C2 award AGS-1003393.

REFERENCES

